Supporting Information for:

Cytochrome c₅₅₂ Mutants: Structure and Dynamics at the Active Site Probed by Multidimensional NMR and Vibration Echo Spectroscopy

Aaron M. Massari[†], Brian L. McClain[#], Ilya J. Finkelstein[†], Andrew P. Lee[‡], Heather L. Reynolds[‡], Kara L. Bren[‡], and Michael D. Fayer[†]

[†]Department of Chemistry, Stanford University, Stanford, CA 94305 [‡]Department of Chemistry, University of Rochester, Rochester, NY 14627-0216

Figure S1. a) Experimental vibrational echo decay data at $T_w = a$) 0.5 ps, b) 2 ps, c) 4 ps, d) 8 ps, e) 16 ps, and f) linear spectrum for *Ht*-M61A (dashed lines) overlaid with the best-fit vibrational echo decay and linear spectrum calculated from nonlinear response theory (solid lines) at 1975 cm⁻¹.

Figure S2. a) Experimental vibrational echo decay data at $T_w = a$) 0.5 ps, b) 2 ps, c) 4 ps, d) 8 ps, e) 16 ps, and f) linear spectrum for *Ht*-M61A/Q64N (dashed lines) overlaid with the best-fit vibrational echo decay and linear spectrum calculated from nonlinear response theory (solid lines) at 1965 cm⁻¹.